什么是整除?
若 A=BC(B、C 均为整数),则:A 能被 B 或 C 整除。即被除数、除数、商都是整数
例:一堆苹果恰好平均每人分 10 个,共有多少个苹果?
答:苹果总数=10人数,总的数量一定是 10 的倍数。
应用环境:
1、文字类:每、平均、倍数、余数、整除等
2、数字类:分数、百分数、比例等
整除判定法则:
1. 常见数:
(1)3、9 看各位数字之和:例:171 是否是 3 的倍数,1+7+1=9。9 是 3 的 倍数,说明 171 是 3 的倍数;171 是否是 3 的倍数,1+
7+1=9,9 是 9 的倍数,说 明 171 是 9 的倍数。
(2)2、5 看末一位:2 看末一位是否是偶数,5 看末一位是 0 或者是 5。
(3)4、25 看末两位:看最后两位数字是否是 4、25 的倍数。例:486218 是否是 4 的倍数,18/4 不是整数,说明不是 4 的倍数,18 不是 25 的倍数,说明 486218 不是 25 的倍数。
(4)7:前几位减去个位的2倍;例:1008是否是7的倍数,100-8×2=84,84是7的倍数则1008是7的倍数。
(5)11:奇数位上的数字之和与偶数位上的数字之和作差;例:193765是否是11的倍数,1+3+6=10,9+7+5=21,两数作差等于11,11是11的倍数,则193765是11的倍数。
(6)13:前几位减去个位的9倍;例:1001是否是13的倍数,100-9=91,91是13的倍数,则1001也是13的倍数。
2. 复杂倍数用因式分解。
(1)例:判断一个数据是否是12的倍数,可以把12拆成 3×4,拆分后的两个数字必须是互质,互质说明两个数字没有公约数。12不能分解成 2×6,2和6有公约数2,不能这么拆分。
(2)要看一个数据是否是 45 的倍数,拆成 5×9,不能拆成 15×3,15和3有公约数3,不能拆成15×3 的形式。
【例 1】(2017 联考)如下图,一个正方体的表面上分别写着连续的6个整 数,且每两个相对面上的两个数的和都相等,则这 6 个整数的和为:
A.53 B.52 C.51 D.50
【选 C】
【解析】整除型。相对面:上和下、左和右、前和后,一共三组相对面,每两个相对面的和是相等,上+下=左+右=前+后,假设上+下为 a,左+右也为 a,前+后也为 a,总数=a+a+a=3a,说明 6 个整数和一定是 3 的倍数,观察选项,个位数字之和是 3 的倍数,说明数字是 3 的倍数,只有 C 项 51 是 3 的倍数。【选 C】
【例 2】(2017 新疆)甲、乙两个班各有 30 多名学生,甲班男女生比为 5: 6,乙班男女生比为 5:4,则甲、乙两班男生总数比女生总数:
A.多 1 人 B.少 1 人 C.多 2 人 D.少 2 人
【选 A】
【解析】“30 多”即 31~39,出现两个比例,问的甲、乙两个班男女 人数之差。先考虑整除特性,甲班:男生:女生=5:6,说明甲班男生是 5 的倍数,女生是 6 的倍数;则甲班总数=5x+6x=11x,总人数为 30 多,且为 11 的倍数,则甲班人数为 33,11x=33,解得 x=3,则甲班男生=3×5=15,甲班女生= 3×6=18。乙班男生是 5 的倍数,女生是 4 的倍数,则乙班总数=5a+4a=9a,总人 数为 30 多,且为 9 的倍数,则乙班人数为 36,9a=36,解得 a=4,则乙班男生= 4×5=20,乙班女生=4×4=16。故男生人数之和-女生人数之和=(15+20)-(18+16)=35-34=1,对应 A 项。【选 A】